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Three-dimensional dendrite-tip morphology at low undercooling

Alain Karma, Youngyih H. Lee, and Mathis Plapp
Physics Department and Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston, Massachus

~Received 2 September 1999!

We investigate the three-dimensional morphology of the dendrite tip using the phase-field method. We find
that, for low undercoolings, this morphology is ostensibly independent of anisotropy strength except for a
localized shape distortion near the tip that only affects the value of the tip radiusr @which is crudely approxi-
mated byr'(12a)r Iv wherer Iv is the Ivantsov tip radius of an isothermal paraboloid with the same tip
velocity anda is the stiffness anisotropy#. The universal tip shape, which excludes this distortion, is well fitted
by the formz52r 2/21A4r 4 cos 4f whereuzu is the distance from the tip and all lengths are scaled byr Iv .
This fit yieldsA4 in the range 0.00420.005 in good quantitative agreement with the existing tip morphology
measurements in succinonitrile@LaCombeet al., Phys. Rev. E52, 2778~1995!#, which are reanalyzed here and
found to be consistent with a single cos 4f mode nonaxisymmetric deviation from a paraboloid. Moreover, the
fin shape away from the tip is well fitted by the power lawz52auxu5/3 with a'0.68. Finally, the character-
ization of the operating state of the dendrite tip is revisited in the light of these results.

PACS number~s!: 68.70.1w, 81.10.Aj, 64.70.Dv, 81.30.Fb
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I. INTRODUCTION

The shape of crystal dendrites was first suggested by
papetrou@1# to be parabolic, and slightly more than a deca
later Ivantsov demonstrated@2# that a parabola~paraboloid!
is an exact solution of the steady-state growth equation
two ~three! dimensions when capillary effects are entire
neglected and the interface is isothermal. He derived
well-known relationship

D5PIv exp~PIv! E
PIv

`

ds
exp~2s!

s
~1!

between the Peclet numberPIv5r IvV/(2D) and the dimen-
sionless undercoolingD5(TM2T`)/(L/cp) for a paraboloid
of tip velocity V and tip radiusr Iv whereD is the thermal
diffusivity, TM is the melting temperature,T` is the initial
temperature of the undercooled liquid,L is the latent heat of
melting, andcp is the specific heat at constant pressure.

In more recent history, the development of solvabil
theory@3,4# has led to the additional and crucial understan
ing that the anisotropic surface energy acts as a singular
turbation that uniquely selects the tip velocity, and also alt
the entire dendrite shape@5–7#. According to this theory, the
scaling parameters* 52Dd0 /r Iv

2 V ~whered0, defined be-
low, is the capillary length! approaches a constant at lo
undercooling that only depends on the anisotropy stren
~denoted here bye4 for a crystal with an underlying cubic
symmetry!, and scales ass* ;e4

7/4 in the limit of vanishingly
small anisotropy. In this same limit, Ben Amar and Bren
@5# have predicted that capillary effects lead to a univer
fourfold deviation from a paraboloid of the form

z52
r 2

2
1 A4r 4 cos 4f, ~2!

where A451/88 is independent of anisotropy strength a
(r ,f) are the polar coordinates in the plane normal to
PRE 611063-651X/2000/61~4!/3996~11!/$15.00
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growth axisz with all lengths scaled byr Iv . The improved
prediction A451/96 has been obtained in a subsequ
analysis@6#.

To characterize the shape further behind the tip, Bre
remarked that the cross-sectional shape of needle crystal
drites perpendicular to the growth axis can be assume
evolve with increasing distanceuzu from the tip as a two-
dimensional growth shape in time (t5uzu/V). The area of
this shape increases linearly in time, and thusuzu, as

S~z!52pr Ivuzu, ~3!

wherer Iv is defined by Eq.~1! with V being the actual tip
velocity. This area corresponds to the well-known se
similarity solution of a growing circle in two dimensions an
is also the exact cross-sectional area of the three-dimens
Ivantsov paraboloid of revolution. The above mapping
presumed to become justified far enough away from the
where the component of the heat flux alongz can be ne-
glected. Using this mapping and the results of a previo
analysis of two-dimensional anisotropic Laplacian growth
constant flux@8#, he predicted that the width of the fou
dendrite fins should increase as the 3/5 power of the dista
behind the tip@7#, yielding the expression

z52
3

5 S s*

s2*
D 1/3

uxu5/3, ~4!

wherex is the interface coordinate normal to thez axis in a
~010! section of the tip ands2* (s* ) is the tip scaling pa-
rameter in two ~three! dimensions. Moreover, the rati
s2* /s* becomes independent of anisotropy for weak anis
ropy with (s2* /s* )1/3'1.

Our goal in this paper is to use the phase-field method
obtain a characterization of the dendrite tip morphology t
is sufficiently detailed and accurate to test the above theo
ical predictions and to make a critical comparison with e
isting benchmark experiments@9,10#. The present simula-
tions are based on a novel adaptive-step diffusion Mo
3996 © 2000 The American Physical Society
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Carlo method@11,12# that provides an efficient treatment o
the large scale diffusion field away from the growing stru
ture. Thus this method allows us to investigate a relativ
low undercooling rangeD;0.1 (PIv;0.03), in contrast to
previous simulations that were limited to Peclet numbers
order unity@13#. As it turns out, and this is one of the ma
findings in this paper, the tip morphology in this Peclet nu
ber range is already ostensibly independent of anisotr
strength and undercooling, except for a localized shape
tortion at the tip that is not experimentally relevant. We a
therefore able to compare meaningfully this morphology
existing detailed dendrite shape measurements in succin
trile @9# and xenon@10#, even though these measureme
were carried out at even smallerD.

In the next section, we review the basic equations of
symmetric model of dendritic growth in three dimensio
and briefly summarize our numerical methods. The num
cal results are then presented in Sec. III and discussed in
IV. Finally, a summary and conclusions are presented in S
V.

II. BASIC EQUATIONS

We study the standard symmetric model of solidificati
in a pure undercooled melt that assumes equal thermal
fusivities in the solid and liquid phases. The basic equati
of this model are given by

] tu5D¹2u, ~5!

vn5D~]nuus2]nuu l !, ~6!

u52d0(
i 51

2

@a~ n̂!1]u i

2 a~ n̂!#k i , ~7!

where following common notation,u5(T2Tm)/(L/cp) is
the scaled temperature field that is zero in equilibrium a
equal to 2D in the liquid far from the interface
]nuu l (]nuus) is the normal gradient ofu on the liquid~solid!
side of the interface,vn is the normal velocity of the inter
face, u i are the local angles between the normaln̂ to the
interface and the two local principal directions on the int
face,k i are the principal curvatures,d05g0TMcp /L2 is the
microscopic capillary length, andg(n̂)5g0a(n̂) is the an-
isotropic surface energy where

a~ n̂![~123e4!F12
4e4

123e4
~nx

41ny
41nz

4!G ~8!

for a material with an underlying cubic symmetry, with thex,
y, andz axes chosen parallel to the@100# directions. In writ-
ing down the interface condition~7!, we have purposely ne
glected the effect of interface kinetics that is believed to
negligible for the low undercooling range where benchm
shape measurements have been carried out@9,10#. Moreover,
theoretical shape predictions to date@5–7# have neglected
this effect.

We use two different numerical methods. The first, a
main one used here, is the phase-field approach@14,15# that
allows us to study the dendrite shape for the full cubic fo
of the surface energy defined by Eq.~8!. In particular, we
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simulate the time-dependent evolution of a single dend
arm until steady-state growth is reached. Since we are
marily interested in a low undercooling regime, we use
results of the asymptotic analysis of Karma and Rappel@13#
in order to choose the interface width in the phase-fi
model about an order of magnitude smaller thanr, and thus
much larger thand0 for smallD. This analysis also allows u
to choose the model parameters so as to make kinetic ef
vanishingly small. Moreover, we use a recently develop
Monte Carlo algorithm to integrate efficiently the diffusio
equation in the liquid away from the growing structure.
this approach, space is divided into two regions. The fi
region consists of the solid plus a thin liquid layer surroun
ing the interface where the deterministic phase-field eq
tions are solved on a cubic lattice with the same choice
computational parameters as in Ref.@13#. The second region
is the rest of the liquid where the diffusion equation is solv
using an ensemble of random walkers that take progressi
larger steps with increasing distance away from the interfa
The algorithm used to interface the deterministic and s
chastic solutions of the diffusion equation in these two
gions and to update the walkers has been summarized in
@11# where it was used to study the early stage of dendr
evolution. It has also been exposed in more details in R
@12# together with the results of numerical tests and need
be redescribed here.

We exploit the cubic symmetry to reduce simulation tim
by only integrating a part of a single dendrite arm~the do-
main x.0, 0,y,x and z.x), taking advantage of the
symmetry planes defined byx50, y50, x5y, and x5z.
The whole dendrite can then be reconstructed by succes
reflections at these planes, and the result of one of our si
lations is shown in Fig. 1. These simulations were perform
on regular lattices of size 24032403800 and each took
about 200 h of CPU time on a 525 MHz DEC-8400 com
puter. Note that almost no sidebranches can be discer
although the length of the dendrite arms is more than
times the tip radius of curvature. For the analysis of t
steady-state shapes, we used only the part of the den

FIG. 1. Snapshot of a three-dimensional simulated dendrite w
D50.1 ande450.025.
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3998 PRE 61ALAIN KARMA, YOUNGYIH H. LEE, AND MATHIS PLAPP
grown at a constant tip velocity, which corresponds to ab
one third of the arm length in Fig. 1. To check whether t
shape is well converged, we performed one run in which
dendrite arm growing along the positivez direction was ‘‘cut
off’’ sufficiently far behind the tip, and its further evolutio
was simulated in a smaller box moving with the dendrite
for several diffusion times (D/V2). No significant change o
the shape was observed. In addition, this run~for D50.1 and
e450.025) yielded data which extend considerably farth
behind the tip than for the other parameters, well to with
the range where sidebranches are observed in experime

The second numerical method is the standard bound
integral method@16# that can be used to solve directly th
sharp-interface steady-state growth equations with the s
plified axisymmetric form of surface energy

a~ n̂![~123e4!F12
4e4

123e4
S cos4u1

3

4
sin4u D G , ~9!

which is obtained by averaging the full cubic form~8! over
the polar anglef in thex-y plane;u is the angle between th
local normal to the solid-liquid interface and thez axis. This
method only describes axisymmetric tip shapes and is
only used here as an additional basis of comparison w
phase-field results regarding the anisotropy-dependent s
distortion in the tip neighborhood and the selected tip op
ating state.

III. NUMERICAL RESULTS

A. Equal cross-sectional area shape

The cross-sectional area of solid normal to the grow
axis was calculated using the formula

S~z!5E 1

2
@c~x,y,z!11# dx dy, ~10!

wherec(x,y,z) is the phase field that varies from11 in the
solid to 21 in the liquid in the present model@13# and
c(x,y,z)50 defines the solid-liquid interface. This formu
is accurate far enough away from the tip, but of course no
the tip itself, which suffices for the present purposes. Plot
S(z) vs uzu are shown in Fig. 2 for different undercooling
and anisotropy strengths.S(z) is accurately fitted by a
straight line sufficiently away from the tip. This allows us
define the ‘‘parabolic’’ tip radius,rp , of a paraboloid of
revolution with the same cross-sectional area as the non
symmetric phase-field shape. Such a paraboloid has a c
sectional area

Sp~z!52prp~z02z! for z,z0 , ~11!

wherez0 is its tip position. By fitting the linear part ofS(z)
away from the tip computed from Eq.~10! with Eq. ~11!, we
obtain an accurate estimate ofrp ~note thatz0 need not co-
incide with the tip position of the full nonaxisymmetri
shape, see below!. The quality of this fit will be illustrated
below in Fig. 17, where it is compared to a different meth
for determiningrp .

Remarkably, and in good agreement with theoretical
pectation@Eq. ~3!#, rp coincides to within a numerical accu
racy of 1–2 % with the Ivantsov tip radiusr Iv[2DPIv /V of
t
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the isothermal paraboloid growing with the same tip veloc
as the phase-field shape for the different undercoolings
anisotropies investigated here. This indicates thatrp'r Iv is
potentially a good scaling parameter for the entire dend
shape, as will be confirmed below. Therefore, unless oth
wise stated, all lengths will be rescaled byr Iv for the re-
minder of this paper. The origin of thez axis is chosen to
coincide with the tip position of the nonaxisymmetric de
drite shape.

It is also useful to define the equal cross-sectional a
~ECSA! shape

r 0~z!5F 1

2pE0

2p

dfr 2~z,f!G1/2

5FS~z!

p G1/2

, ~12!

wherer (z,f) is the radial coordinate of the full nonaxisym
metric shape. This is simply the axisymmetric shape that
the same cross-sectional area as the full shape, and the a
results imply at once thatr 0(z) coincides away from the tip
with the Ivantsov paraboloid. The ECSA shape is shown
solid squares in Fig. 3 together with the parabolic fit obtain
by using Eqs.~11! and~12!. The parabolic fit is extended a
the way to its tip positionz0 for illustrative purposes.

B. Nonaxisymmetric tip morphology

Longitudinal sections of the dendrite tip in thef50° and
f545° planes that correspond to the ‘‘fins’’ and ‘‘valleys
of the nonaxisymmetric shape, respectively, are super
posed in Fig. 3. The two contours coincide in the upp
region of the tip, where the shape is essentially axisymm
ric, but depart from a paraboloid~dashed line in Fig. 3! in a
small region near the tip that will be examined more clos
in Sec. III C. The important point here, especially releva
for comparisons between simulations and experiments
that aside from this localized tip distortion the entire t
shape scales withr Iv and is ostensibly independent of a
isotropy strength and undercooling over the range inve
gated here. This is clearly demonstrated by the nearly per
superposition of longitudinal and transverse sections of

FIG. 2. Plot of the cross-sectional areaS(z) vs distanceuzu from
the tip for different growth parameters. Lengths are measured
in units of W0, the thickness of the diffuse interfaces in the pha
field model as defined in Ref.@13#.
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various tip shapes shown in Figs. 4 and 5, respectively
three-dimensional view of this universal tip morphology
shown in Fig. 6.

In order to test if the analytical form defined by Eq.~2!
provides an accurate description of the nonaxisymmetric
shape, we determinedA4 by minimizing the spatially aver-
aged root-mean-square~rms! deviation^dz2&1/2, between the
actual shape in the~010! plane and the polynomial formz
52r 2/21A4r 4 over the interval 1<uzu<n wheren was var-
ied from 4 to 20 in steps of 2. The resulting values ofA4 and
^dz2&1/2 are plotted for the different undercoolings and a
isotropy strengths in Figs. 7 and 8, respectively. Figure
shows that the form~2! provides a good fit of the fin shap
for n up to about 10, after which the rms deviation starts
increase rather sharply. Figure 7, in turn, shows that the fi
value ofA4 depends on the fitting length. This means that
polynomial form ~2! does not exactly characterize the fi

FIG. 3. Sections of phase-field shapes in thef50° plane~solid
line! and f545° plane ~dotted line!, equal cross-sectional are
shape~solid squares!, and parabolic fit of the latter~dashed line!.
Parameters areD50.1 ande450.025.

FIG. 4. Superposition of dendrite contours taken along fins
valleys for different parameters.
A

ip

-
8

o
d

e

shape. However, the dependence ofA4 on n is rather weak:
A4 varies between about 0.004 and 0.005 forn between 4
and 10. A comparison of the polynomial fit and the com
puted fin shape is shown in Fig. 9, showing an excell
overlap up to 10r Iv behind the tip.

We have examined how the form~2! with the above pro-
cedure to determineA4 fits the entire nonaxisymmetric
shape, and not just the fin. This is illustrated in Fig. 10 wh
we compare the transverse sections of the computed ph
field tip shape with the ones corresponding to the form~2!.

d

FIG. 5. Superposition of transverse tip sections fore450.025,
D50.1 ~solid lines!, e450.025, D50.2 ~dotted lines!, and e4

50.0125, D50.2 ~dashed lines!. Cross sections are taken a
uzu/r Iv52,4,6, . . . .

FIG. 6. Three-dimensional view of the simulated tip morph
ogy for D50.1 ande450.025.
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The two are in good agreement up to tenr Iv behind the tip,
although a small deviation due to higher azimuthal harm
ics is noticeable.

We have also fitted the fin shape to the power lawz5
2auxub by minimizing the rms deviation from the compute
shape as above. This minimization was carried out both w
a andb as free parameters and witha as free parameter an
b fixed to the theoretically expected value 5/3. The values
a andb resulting from these two fits are plotted vs the fittin
range parametern in Fig. 11 with the corresponding rm
deviations plotted in Fig. 8. In the two-parameter fit,b is
larger than 5/3 ('1.8) for smalln and tends to 1.7 for large
n, which is close to 5/3. Note that the value ofa is somewhat
smaller in the two-parameter fit than in the one paramete
because of the largerb in the former, and that the two
parameter fit has a smaller rms deviation as one would
pect. The two fits, however, become essentially equally g
for large n. In this range, the one-parameter fit yieldsa
'0.68 independent of anisotropy strength. A comparison
the power law fit and the computed fin shape is shown in F
9. In contrast to the polynomial fit, which becomes inacc

FIG. 7. Plot ofA4 vs n obtained from a fourth order polynomia
fit of the fin shape over the intervalr Iv<uzu<nr Iv .

FIG. 8. Plot of the root-mean-square shape deviation co
sponding to the polynomial and power law fits versus the fitt
length. Black symbols:e450.025, D50.1; grey symbols:e4

50.025,D50.2; open symbols:e450.0125,D50.2.
-

th

f

fit

x-
d

f
.

-

rate for uzu.10r Iv , the power law closely fits the fin shap
even far away from the tip.

C. Localized tip distortion and tip radius

Let us now return to examine more closely the shape
parture from a paraboloid in the region very close to the
For this purpose, we show in Fig. 12 a tip magnification
the same curves as in Fig. 3, together with the axisymme
shape computed by the boundary integral method for an
muthally averaged surface energy. The latter coincides w
with the fins and valleys in the tip neighborhood, but t
superposition of these three curves departs from the p
bolic fit of the ECSA shape, which represents the interfa
shape if anisotropic capillary effects were absent. Note a
that the boundary integral result starts to deviate noticea
from the phase-field shape rather close to the tip, appr
mately atuzu'0.5r Iv .

-

FIG. 9. Comparison of the computed fin shape~open circles!
with the polynomial fit forn510 (A450.004, solid line! and the
power law fit forn520 andb55/3 (a50.685, dashed line!.

FIG. 10. Comparison of the computed tip cross-sections fore4

50.025, D50.1, and the shape given by Eq.~2! with A450.004.
Cross sections are taken atuzu/r Iv52, 4, 6, 8, and 10.
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A quantitative measure of this departure is the ra
r/r Iv , wherer is the actual numerically computed tip radiu
of the phase-field or boundary integral shape andr Iv @recall
that r Iv[2DPIv /V where PIv is the Peclet number pre
dicted by Eq.~1! and V is the numerically computed tip
velocity#. For the phase-field shape,r is computed from the
f50° section using the interpolation scheme that is
scribed in Appendix B of Ref.@13#, and which has been
tested against exact boundary integral benchmark resul
two dimensions.

Figures 13 and 14 show the variationr/r Iv as a function
of undercooling and anisotropy, respectively. The depar
of r from the Ivantsov relation increases with anisotro
strength. The same trend was previously found for a hig
undercooling (D50.45) in Ref.@13# and the results of thes
earlier simulations are also shown in Fig. 14. A new findi
here is that this departure becomes independent of un

FIG. 11. Plot of the prefactora and exponentb vs the fitting
range parametern. Black symbols:e450.025, D50.1; grey sym-
bols: e450.025,D50.2; open symbols:e450.0125,D50.2.

FIG. 12. Magnification of the tip region showing the sam
curves as in Fig. 3, with the solid squares omitted for clarity. A
superimposed is the axisymmetric shape computed by the boun
integral method for an azimuthally averaged surface energy~thick
dashed line!. Parameters areD50.1 ande450.025.
-

in

re

er

er-

cooling in the low undercooling range studied here as can
seen from the flattening of the curves at smallD in Fig. 13.
For D;0.1, r/r Iv is already quasi-independent ofD and its
small D limiting value depends solely on the anisotrop
strength. Interestingly, the variation ofr/r Iv with anisotropy
is crudely approximated by the relation

r/r Iv'12a, ~13!

over an order of magnitude change in anisotropy stren
wherea515e4 is the stiffness anisotropy. Since the Gibb
Thomson condition~7! implies that the steady-state dendri
tip temperature is given by

utip522d0~12a!/r, ~14!

Eq. ~13! is equivalent to stating that the dendrite tip tempe
ture at a given undercooling is relatively independent of
isotropy strength. The straight line corresponding to Eq.~13!
is superimposed as a dashed line in Fig. 14. The nume
results lie slightly above and below this curve for small a
large anisotropy, respectively.

ary

FIG. 13. Ratior/r Iv versus dimensionless undercoolingD for
different anisotropies. Lines are drawn as a guide to the eye.

FIG. 14. Ratior/r Iv versus anisotropy forD50.1, and forD
50.45 from Ref.@13#. Superimposed is the constant tip temperatu
relationr/r Iv51215e4 ~dashed line!.



o

o
l-

ry
e

th

pu
th

re
a

e
-
o

p
r-
ic
t

an
.
un

ve
t o

n
a

na

n
or
ls

ye

w

d

e

in

the
ted
that
at
4
nd
ted
e

s
tip
he

iven
at
16
ec-

e
at

ts
ts

ure

our

4002 PRE 61ALAIN KARMA, YOUNGYIH H. LEE, AND MATHIS PLAPP
IV. DISCUSSION

A. Comparison with analytical theories

Let us first compare our results with the analytical the
ries reviewed in the introduction. We have found that Eq.~2!
provides a good fit of the tip shape up to a distance of ab
eight to tenr Iv behind the tip. Moreover, for low undercoo
ing, this shape is independent of anisotropy strength~at least
over the range investigated here! which is in qualitative
agreement with the prediction of linear solvability theo
@5,6#. The value ofA4 found here, however, is about twic
smaller than the valueA451/96'0.104@6# predicted by this
theory. One possible reason for this discrepancy is that
existing solvability calculations@5,6# are carried out in the
limit of vanishing anisotropy, whereas in the present com
tations the anisotropy is finite. We have seen, however,
even for a short fitting distance behind the tip,A4 increases
from about 0.004 to 0.005 when the anisotropy is lowe
from 2.5 to 1.25 %, which does not appear consistent with
extrapolation ofA4 to its theoretically predicted value in th
limit that e4→0. It seems also difficult to explain this dis
crepancy by the fact that existing calculations are based
linearizing the steady-state growth equations around a
raboloid of revolution. We find indeed a localized tip disto
tion that depends strongly on anisotropy strength, and wh
is not accounted for in these theories. The rest of the
shape, however, departs only weakly from a paraboloid
is well fitted by the form~2! independently of anisotropy
Therefore, the origin of this discrepancy remains to be
derstood.

In contrast, the predicted power law@Eq. ~4!# for the fin
shape away from the tip is in relatively good quantitati
agreement with the present simulations. We find a good fi
the fin shape with a fixed exponentb55/3 and a prefactor
a'0.68 that is independent of anisotropy strength and o
about 15% larger than theoretically predicted, or with
slightly higher exponentb51.7 and a lowera'0.65. It is
interesting to note that the mapping with two-dimensio
growth shapes@7# implies that Eq.~4! should only strictly
hold in a region far behind the tip where the cross-sectio
shape contains four well-developed arms. It is theref
rather remarkable, and perhaps coincidental, that it a
holds closer to the tip in a region where the fins are not
well developed. Finally, we note that our results indicate
smooth crossover from a polynomial form to a power la
form for the fin shape with increasinguzu. This is indicated
by the excellent overlap of these two forms in an interme
ate distance range behind the tip~Fig. 9!.

B. Comparison with experiments

On the experimental side, the most detailed shape m
surements to date have been carried out by LaCombeet al.
who analyzed the full three-dimensional tip morphology
succinonitrile ~SCN! @9# and by Bisang and Bilgram who
studied the fin shape in xenon@10#. On the basis of their
measurements on SCN dendrites, Lacombeet al. reported
that the tip shape can be fitted by the form

z'2
r 2

2
2Q~f! r 4, ~15!
-
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where lengths are in units of the tip radius. The values for
function Q(f) reported by these authors and the associa
error bars are reproduced here in Fig. 15. It can be seen
Q(f) differs from a cosine function, and they concluded th
the tip morphology cannot be described by a pure cosf
mode, in apparent disagreement with solvability theory a
the present results. This function, however, was construc
from projected shapesobtained by taking photographs of th
dendrite tip from different azimuthal anglesf. We point out
here that Eq.~15! with Q(f) obtained from projected shape
does not correctly represent the actual nonaxisymmetric
morphology from which these projections are obtained. T
reason is that the projected shape observed from a g
azimuthal anglef differs from the cross-sectional shape
this angle. To illustrate this point, we have drawn in Fig.
a cross section of the tip shape normal to the growth dir
tion and rotated it by an anglef with respect to the viewing
direction chosen parallel to theY axis. The projected shap
appears wider than the ‘‘true’’ contour of the dendrite at th
orientation. Therefore, the dendrite cross sections~Fig. 11 in
Ref. @9#! reconstructed by LaCombeet al. using Eq.~15! are
not representative of the true cross sections.

FIG. 15. FunctionQ(f) from the experimental measuremen
of LaCombeet al. in SCN @9# ~circles and error bars; some poin
close tof50° have been omitted!. The functionQ(f) computed
here from the projections of the shape defined by Eq.~2! with A4

50.004 is shown as a dashed line. This curve differs from a p
cosine function, which is also shown for comparison.

FIG. 16. Sketch illustrating the difference between the cont
of a dendrite as seen under an anglef with respect to a~010! plane
and the ‘‘true’’ dendrite contour at this angle.
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It is nonetheless possible to relate our results to the
perimental measurements of these authors by calculating
merically the functionQ(f) that corresponds to the tip mo
phology characterized by a single cos 4f mode@Eq. ~2!#. As
mentioned earlier, Eq.~2! with A450.004 provides a good fi
to our simulated tip morphology up to 10r Iv behind the tip
and is therefore adequate for the purpose of this compar
~neglecting small corrections due to higher azimuthal h
monics!. To obtainQ(f), we must first calculate numeri
cally the projected shape, and thus relate theapparentwidth
w(f,z) of the dendrite at a given distancez behind the tip to
the true widthr (2f,z), which is the intersection of the
fixed X axis with the interface. Using the definitions of Fi
16 and purely geometrical considerations, it is simple to
tain the relation

w~f,z!5r ~c2f,z!cosc, ~16!

wherec(f,z) is defined implicitly by the relation

c5arctanF]cr ~c2f,z!

r ~c2f,z! G . ~17!

Equation ~17! follows directly from the condition that the
point on the true contour that corresponds to the appa
~perceived! edge of the solid tip~point A in Fig. 16! be the
one of maximum width as a function ofc. For a fixedf, the
correspondingc can be simply obtained by setting equal
zero the derivative of the right-hand side of Eq.~16! with
respect toc. The anglec defined implicitly by Eq.~17! is
then the polar coordinate of this point measured from
fixed X axis in Fig. 16, andf2c measures the angle be
tween the line OA and the~010! plane. Note that at this
point, Eqs.~16! and ~17! can be used to construct the pr
jected shape that corresponds to an arbitrary true sh
whose transverse sections are convex. To proceed furthe
now restrict our attention to the case where the true shap
given by Eq.~2!, or equivalently

r ~f,z!5F12A1216zA4 cos 4f

4A4 cos 4f G1/2

. ~18!

Combining Eqs.~16!–~18!, we obtain numerically the pro
jected shapez(f,w) that is the inverse ofw(f,z) at fixedf.
We finally obtainQ(f) by following the same procedure a
LaCombeet al. that consists of fitting these shapes to
fourth order polynomial of the form

z'2w2/22Q~f!w4 ~19!

for different values off. This procedure yields a functio
Q(f) that differs from cos4f and is superimposed as
dashed line in Fig. 15. This function fits well through th
data points forQ(f) reported by LaCombeet al. We there-
fore conclude that, within experimental error bars, our sim
lated universal tip morphology dominated by a single cosf
mode with an amplitudeA4'0.004 agrees quantitativel
well with the true underlying tip morphology of SCN den
drites.

A few additional remarks should be made. First, in dra
ing the above conclusion we have implicitly assumed that
inverse problem that consists of reconstructing the true sh
x-
u-

on
r-

-

nt

e

pe
we
is

-

-
e
pe

from its projections has a unique solution. It can indeed
shown that this solution is unique@17#, such that this as-
sumption is valid. That is if we were to calculate the tr
shape from the projections defined by Eq.~19!, we would
recover a tip shape that is well fitted by Eq.~2!. Moreover,
an explicit solution to this inverse problem can be obtain
analytically by cleverly noting@17# that it is exactly analo-
gous to the one of constructing a two-dimensional equi
rium crystal shape, with the role of the anisotropic surfa
energy being played here byw(f,z) at fixed z. This is the
well-known Wulff construction@18# and the application of
thej-vector formalism of Cahn and Hoffman@19# yields that
the distanceAB in Fig. 16 is equal tou]fw(f,z)u, and thus
that the solution to this inverse problem is given by

r ~c2f,z!5A@w~f,z!#21@]fw~f,z!#2, ~20!

c52arctanF]fw~f,z!

w~f,z! G . ~21!

In principle, it should therefore be possible to reconstruct
higher azimuthal harmonics from the experimental data.
present, however, such an analysis is precluded by the m
nitude of the error bars in the measurements, especiall
view of the small amplitude of such harmonics predicted
our simulations. Lastly, we note that in the present exam
the exact~numerically computed! projected shapesz(f,w)
defined by Eqs.~16!–~18! are only approximately fitted by
fourth order polynomials inw, even though the underlying
true shapes defined by Eq.~2! are exact fourth order polyno
mials in r. It is simple to see why this is so by using Eq
~16!–~18! to derive an analytical expression for the project
shape in powers ofA4 ~valid close to the tip!, and by noting
that this expansion generates terms;w6 at O(A4

2). None-
theless, the form@Eq. ~19!# provides a reasonably accura
global fit of the projected shape over the range 0,uzu,10
and is therefore quantitatively adequate to interpret exp
mental results.

In xenon, Bisang and Bilgram have reported that th
cannot accurately fit the fin shape with a low order polyn
mial. They find, instead, a good fit with a power lawuzu
5axb with a50.5860.04 andb51.6760.05, that extends
rather close to the tip. Our present results differ from the
in that both for the polynomial and the power law fit, th
fitting parameters vary with the fitting length, including th
exponentb which increases when the fit is restricted to
region close to the tip. On the other hand, in agreement w
their findings, the polynomial fit becomes inaccurate
larger fitting lengths, whereas the power law fits the fin sha
even far behind the tip. While the exponents obtained fr
our simulations and their measurements are very close,
find here a slightly larger prefactora'0.68, independently
of anisotropy. Note, however, that this discrepancy might
simply due to the choice of the rescaling length. Bilgram a
Bisang use the actual tip radius as a scaling length, whe
we use the Ivantsov tip radius. Taking this into account, th
prefactor a8 and our prefactora should be related bya8
5a(r/r Iv)b21. As r is smaller thanr Iv , our prefactor
should indeed be larger than theirs. It would be interesting
reexamine the experimental data usingr Iv as the scaling
length.
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C. Tip distortion

The tip distortion analyzed in Sec. III C can be interpret
to result from capillary effects at the tip that persist even
the limit of low undercooling. It may appear at first counte
intuitive that such effects remain important in this limit sin
the magnitude of capillary corrections to the tip temperat
vanishes due to the increase of the tip radius, i.e.,d0 /r→0
asD→0. One must recall, however, that the tip velocity a
thus the temperature gradient at the tip also vanishes in
limit. Thus the correct measure of the relative importance
capillary effects is the ratio of the magnitudes of the norm
gradient ofu in the tip region induced by capillary variation
(]nu)c;d0 /r2, and by heat diffusion, (]nu)d;V/D, or
(]nu)c /(]nu)d;Dd0 /(r2V);s* . The constancy ofs* im-
plies that capillary effects can produce a non-negligible
distortion that persists in the low undercooling limit.

With regard to the tip radius, Eq.~13! can be crudely
interpreted to be the simplest linear interpolation between
isotropic limit where the tip radius approaches its isotherm
value, and the limita→1 (e4→1/15) which marks the ap
pearance of cusps at the@100# orientations of the equilibrium
shape wherer vanishes. There is, of course, no obvious re
son why this linear interpolation should exactly hold in b
tween these two limits and Fig. 14 shows that our numer
results do not lie exactly on it. Equation~13! should only be
considered a reasonable first estimate of the actual tip rad

D. Operating state

Traditionally, the operating state of the dendrite tip h
been characterized in terms of two independently measur
parameters, the tip radiusr and velocityV, from which one
defines the scaling parameters

P5
rV

2D
, ~22!

s* 5
2Dd0

r2V
. ~23!

FIG. 17. Plot of the parabolic tip radiusrp versus the fitting
rangen (uzu,nr Iv) in a fit using Eq.~26! with both rp andA4 as
fit parameters. For comparison, the results obtained from a fit of
equal cross-sectional area shape according to Eq.~11! are shown as
open symbols.
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It is clear, however, from the present results that an accu
measurement of the ‘‘true’’ tip radius is most likely not e
perimentally feasible. Such a measurement would requi
very high resolution of the localized shape distortion near
tip that is already barely noticeable on the scale of Fig. 3
a 2.5% anisotropy, and with the interface and the refere
parabola represented by thin lines that are finer than the
perimental resolution.

The present results show that, outside the small reg
very close to the tip where this distortion is noticeable, t
entire tip shape is well fitted by a paraboloid with a sm
nonaxisymmetric fourfold deviation, and that the rest of t
dendrite shape further away from the tip scales with the
radiusrp of this paraboloid. Therefore, a better definition
the tip operating state is to userp instead ofr and to define
accordingly the dimensionless parameters

Pp5
rpV

2D
, ~24!

sp* 5
2Dd0

rp
2V

, ~25!

which are actually the ones that have been traditionally m
sured in experiments. In addition, the definition ofs* used
in solvability theories~see Sec. I! coincides with the latter
definition with the further assumption thatrp5r Iv . For a
weakly anisotropic material such as SCNr is not too differ-
ent fromrp such that the two definition sets@Eqs.~22!,~23!
and~24!,~25!# are roughly equivalent. In contrast, for a mo
strongly anisotropic material such as pivalic acid~PVA!, rp
can be about two to five times larger thanr, and concomi-
tantly sp* four to twenty-five times smaller thans* if we
assume thate4 is somewhere in the range 0.02520.05,
where the lower limit has been measured by Muscholet al.
@20# and the upper one by Glicksman and Singh@21#.

If we adopt Eqs.~22!,~23! as a definition of the tip oper
ating state, three questions remain to be addressed. F
what is the best way to measurerp? Second, how accuratel
does linear solvability predict the tip operating state as co
pared to the present simulations? Lastly, doesrp necessarily
equalr Iv , as found here and assumed in solvability theo

In our simulations, we have obtainedrp in Sec. III A from
a plot of the cross-sectional area of the dendrite versus
tance from the tip, exploiting the fact that, away from the t
rp is simply the slope of this curve divided by 2p. This
provides a very accurate procedure, as can be demonst
by plotting the resulting value forrp versus the fitting range
~Fig. 17!: for n between 4 and 10,rp varies by less than one
percent. The dendrite cross section, however, is not eas
measure as the true dendrite shape is difficult to reconst
from longitudinal projections for the reasons emphasized
Sec. IV B. The best data are obtained for the fin shape@9,10#.
One way to extractrp is therefore to fit the unrescaled fi
shape with a fourth order polynomial

z52~r /rp!2/21A4~r /rp!4, ~26!

e
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over a varying distance from the tip where bothrp and A4
are allowed to vary, which is the method used by LaCom
et al. in SCN @9#. We have carried out this same procedu
on our computed fin shapes and the results are shown in
17 for two different anisotropies.@Note that this fit differs
from the one carried out in Sec. III B where we fixedrp to its
value ('r Iv) extracted from the cross-section measureme
and only variedA4.# One can see thatrp increases with the
fitting distance (5nr Iv) behind the tip, which renders a pre
cise determination ofrp difficult. This trend was observed
by Bisang and Bilgram in xenon dendrites@10#; on the other
hand, for SCN, wheree4 is about twice smaller than th
lowest anisotropy studied here, LaCombeet al. find thatrp
is almost constant whenn varies between 4 and 10. It i
therefore possible that this fitting procedure improves
lower anisotropies. Figure 17 also shows that the depar
of the fitted radius fromr Iv is of the order of a few percen
for fitting ranges aroundn510, such that this method ca
provide a reasonable estimate.

We compare in Table I the values ofsp* predicted by the
linear solvability theory of Barbieri and Langer@23# with the
values corresponding to the nonaxisymmetric shapes of
phase-field model and the axisymmetric shapes compute
the boundary integral method for an azimuthally averag
surface energy. We list as well thes* values corresponding
to these shapes. Note thatrp5r Iv both for the paraboloid
assumed in solvability theory and for the computed nona
symmetric and axisymmetric shapes, such that compa
sp* values is equivalent here to comparing scaled velo
values Vd0 /D52sp* PIv

2 . One remarkable fact is that th
linear solvability theory predicts relatively accuratelysp*
even though it does not describe the localized tip distort
that causesr to depart fromrp . Thus, we can conclude from
this comparison that this distortion does not strongly aff
the selection of the velocity. A reexamination of the pha
field results of Ref.@13# in terms ofsp* show, however, tha
the linear solvability theory becomes increasingly inaccur
for larger anisotropy values (e4.0.03).

Finally, McFaddenet al. @22# have recently carried out
perturbative analysis of the diffusion field around a nona
symmetric isothermal shape defined at leading order inA4 by
Eq. ~2!, whereA4 is treated as an expansion parameter. Si
their analysis neglects capillary effects, their tip radiusr
should be compared torp here. They derived a correction t

TABLE I. Comparison of the selection constantss* obtained
from the present phase-field simulations, from linear solvabi
theory, and from boundary integral calculations.

D e4 s! sp
!

Phase-field 0.2 0.025 0.171 0.0565
Linear solvability 0.067
Boundary integral 0.150 0.055
Phase-field 0.1 0.025 0.181 0.0611
Linear solvability 0.069
Boundary integral 0.155 0.059
Phase-field 0.2 0.0125 0.0447 0.0282
Linear solvability 0.0294
Boundary integral 0.0394 0.0265
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the Ivantsov relation@Eq. ~1!# that can become significant i
the limit of very low undercoolings. For the lowest unde
cooling studied here (D50.1), this correction is of the orde
of a percent and thus comparable to the accuracy at whicrp

was determined numerically. Our results are therefore no
contradiction with their predictions. We note, however, th
the universal nonisothermal shape found here starts to d
ate from the isothermal one they consider only a short d
tance away from the tip where the fins develop under
action of anisotropic surface tension. Simulations at subs
tially lower undercooling would be necessary to test if th
difference between the isothermal and nonisothermal sha
affects their predictions.

V. CONCLUSIONS

We have studied the three-dimensional morphology of
dendrite tip using recent improvements of the phase-fi
method@11–13# that make it possible to carry out quantit
tively accurate simulations are relatively low undercooling
Our main finding is that the experimentally measurable l
undercooling tip morphology is independent of anisotro
strength and thus universal under the assumption that kin
effects are negligible, in qualitative agreement with solvab
ity theory @5,6#. The nonaxisymmetric deviation of this mo
phology from a paraboloid is well fitted by a single cos 4f
mode with an amplitude that is about twice smaller th
predicted by solvability theory and in good agreement w
existing shape measurements in SCN@9#. Moreover, these
measurements were reanalyzed here and found to be co
tent with a nonaxisymmetric tip shape dominated by a sin
cos 4f mode as in our simulations.

The fins are well described away from the tip by t
power law derived by Brener on the basis of the analogy@7#
between three-dimensional steady-state shapes and
dimensional time-dependent growth shapes@8#, albeit with a
slightly larger prefactor than predicted. Interestingly, the v
lidity of this power law extends remarkably close to the t
Our findings are also in good agreement with experimen
data on xenon dendrites@10#.

Finally, we conclude that the ‘‘true’’ tip radius is not a
experimentally adequate parameter to characterize the tip
erating state since the anisotropy-dependent shape disto
near the tip that fixes this radius is most likely not meas
able. In contrast, the tip radius of the paraboloid which u
derlies the rest of the tip morphology~excluding this distor-
tion! is both measurable and a good scaling parameter for
entire dendrite shape. The latter tip radius is indistingui
able from the Ivantsov prediction over the range of und
cooling studied here, which does not exclude differences
tween these two radii to be present at even low
undercoolings@22#.

It would be interesting in the future to extend the pres
study to investigate how the anisotropic kinetics of molec
lar attachment at the interface alters the tip morphology. T
detailed study of the tip morphology, and in particular
departure from the universal shape characterized here,
actually provide a sensitive probe of interface kinetic effec
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